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Abstract: Automatic detection of retinopathy via computer vision techniques is of great
importance for clinical applications. However, traditional deep learning based methods in
computer vision require a large amount of labeled data, which are expensive and may not be
available in clinical applications. To mitigate this issue, in this paper, we propose a semi-
supervised deep learning method built upon pre-trained VGG-16 and virtual adversarial training
(VAT) for the detection of retinopathy with optical coherence tomography (OCT) images. It
only requires very few labeled and a number of unlabeled OCT images for model training. In
experiments, we have evaluated the proposed method on two popular datasets. With only 80
labeled OCT images, the proposed method can achieve classification accuracies of 0.942 and
0.936, sensitivities of 0.942 and 0.936, specificities of 0.971 and 0.979, and AUCs (Area under
the ROC Curves) of 0.997 and 0.993 on the two datasets, respectively. When comparing with
human experts, it achieves expert level with 80 labeled OCT images and outperforms four out
of six experts with 200 labeled OCT images. Furthermore, we also adopt the Gradient Class
Activation Map (Grad-CAM) method to visualize the key regions that the proposed method
focuses on when making predictions. It shows that the proposed method can accurately recognize
the key patterns of the input OCT images when predicting retinopathy.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) has been widely adopted by ophthalmologists for the
detection of retinopathies due to its high resolution, contactless and nondestructive testing
properties [1,2]. Based on the textural and morphological variations, it is able to detect major
retinopathies, like age-related macular degeneration (AMD) and diabetic macular edema (DME),
which generally lead to vision loss. The AMD can be further divided into “dry” AMD and
“wet” AMD (also known as choroidal neovascularization (CNV)), where the typical feature of
DRUSEN can be seen. With huge number of scanned OCT images, i.e., around 30 millions
per year [3], manual identification of OCT images is a huge burden for ophthalmologist. The
identification task becomes even more challenging in developing countries where the number of
qualified ophthalmologists is inadequate.

Recently, deep learning has achieved great success in many challenging areas, such as image
classification and nature language understanding [4]. One of the most popular deep learning
algorithms is the convolutional neural network (CNN). CNN is designed for image processing
and thus it has been widely used for the recognition of OCT images [5–8]. Lee et al. designed a
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CNN-based method, i.e., VGG-16, to classify normal verses AMD based on OCT images [9]. In
their experiments, more than eighty thousand OCT images were unitized to train the model. In
[10], the authors applied multiple CNN-based deep learning methods, such as ResNet, DenseNet,
CliqueNet, etc., for OCT image classification. Two public datasets were utilized for evaluation,
where 80% of data are employed for model training. Rasti et al. proposed a multi-scale CNN
ensemble method for macular OCT classification [11]. They achieved the precision over 98% and
the AUC (Area under the ROC Curve) over 0.99 in five-fold cross-validation. Li et al. proposed
an ensemble of ResNet for retinopathy detection with OCT images, where 13,192 OCT images
were employed for model training [12]. Deep learning-based retinopathy detection with OCT
images has already achieved remarkable performance, even comparable to ophthalmologists
[13,14]. However, the success of deep learning algorithms heavily relies on large amount of
labeled data for model training, which is expensive and requires lots of human effort.

Pretraining on other image datasets and fine-tuning is a common way to alleviate the requirement
of huge data [15]. Karri et al. proposed a pretrained method to classify OCT images with
DME and AMD [15]. Specifically, a pretrained CNN, i.e., GoogLeNet, was fine-tuned on OCT
images for classification. A similar idea can be found in [13,16], where a pretrained VGG-16
network was adopted and fine-tuned for retinopathy detection with OCT images. Even with
pretrained networks, several thousands of OCT images are still required to fine-tune the networks
for a satisfactory performance. This limits the applicability of deep learning-based automatic
retinopathy detection in real life.

To address these critical issues, semi-supervised deep learning can be a good candidate. It
intends to use both labelled and unlabelled data for model training. Ding et al. proposed a
pseudo-labeling method for semi-supervised deep learning, which attempts to annotate unlabelled
data with pseudo labels and then train the model with both the labelled data and unlabelled data
with pseudo labels [17]. Yao et al. developed a temporal ensembling based semi-supervised
deep learning method [18] with two losses, i.e., supervised loss for labeled data and consistency
loss for unlabelled data. In particular, the consistency loss calculates the difference between the
current prediction and the mean of previous predictions for unlabelled data. Another popular
semi-supervised deep learning method is mean teacher [19]. It designs a teacher model based on
the moving average of the weights of the original model (also known as student). And then, a
consistency loss is calculated based on the difference between the teacher and the student outputs
for the unlabelled data. These models have some limitations: 1) the quality of pseudo labels
greatly influences the model performance; 2) the consistency loss may be unstable, especially at
the early training stage, resulting limited performance.

In this paper, we propose a semi-supervised deep learning method built upon virtual adversarial
training (VAT) [20] for automatic detection of retinopathy with OCT images. Since unlabeled
OCT images can be easily obtained, we attempt to use large amount of unlabeled OCT images to
assist the training of deep leaning algorithms. Specifically, we propose a pretrained VGG-16 with
VAT algorithm to leverage on both labeled and unlabeled OCT images for retinopathy detection.
The cross-entropy loss calculated with the labeled images and the VAT loss calculated with the
unlabeled images are combined to update the parameters of the deep learning algorithm with
gradient-based methods. Besides, we also adopt the Gradient Class Activation Map (Grad-CAM)
[21] to visualize the regions of the input images that the model focus on when making predictions.
As such, it is able to check whether the proposed method can recognize the key patterns during
prediction. To evaluate the performance of the proposed method, we use two widely used public
datasets [22,23]. With only 80 labeled OCT images, the proposed method achieves classification
accuracies of 0.942 and 0.936 on the two datasets, which attains the human expert level. By
using Grad-CAM, we show that the proposed method can find the key patterns when predicting
retinopathy.
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2. Methodology

2.1. Overview

The proposed framework for retinopathy detection is shown in Fig. 1. Firstly, the VGG-16 model
is pretrained on the popular ImageNet dataset [24]. Note that the standard VGG-16 network was
designed for the classification task with 1,000 classes. Therefore, the last layer, i.e., the softmax
layer, contains 1,000 outputs, corresponding to the predicted probabilities for 1,000 classes. In
our case, the number of outputs for the softmax layer needs to be changed to the category number
of retinopathies.

Fig. 1. Proposed deep semi-supervised learning framework for retinopathy detection with
OCT images.

After the model pretraining, the next step is to fine-tune the parameters of the model with both
labeled and unlabeled data. Specifically, we replace the last layer of pretrained VGG-16 (i.e., the
softmax layer with 1,000 outputs) by a softmax layer with C outputs where C refers to the types
of diseases, e.g., normal, AMD, DME, etc. The weights of this new softmax layer is randomly
initialized. Next, the model is fine-tuned using the small amount of labelled OCT images with
large amount of unlabelled ones. Note that, the pretraining provides a good initialization for fast
and better convergence of the model. For the labeled and unlabeled data, a cross-entropy loss and
a VAT loss are calculated, respectively. Then, both losses are combined to obtain the final loss of
the model. Finally, the stochastic gradient decent (SGD) calculated upon the final loss is adopted
to optimize the parameters of the model for retinopathy detection. The detailed introduction of
the VGG-16 with pretraining and the VAT will be presented in the following subsections.

2.2. Pretrained VGG-16 for OCT images

VGG-16, a very deep CNN model, has been widely used for image classification tasks [25].
Figure 2 shows the detailed structure of the VGG-16 for the detection of retinopathy with OCT
images. Firstly, the original OCT B-scans are resized to the dimension of 224 × 224 × 3 which is
the input size of VGG-16. The resized OCT B-scans will go through several convolutional layers
with a filter size of 3 × 3 and a stride size of 1, followed by max-pooling layers with a pooling
size of 2 × 2 with a stride size of 2. The number of filters for each convolutional layer can be
found in Fig. 2. Then, a flatten layer is utilized to convert the data into a one-dimensional feature
vector after the last max-pooling layer. The one-dimensional feature vector will be fed into two
fully-connected (FC) layers with a hidden size of 4096 and a softmax classification layer with C
outputs. The activation functions of the convolutional layers and fully-connected layers are the
popular rectified linear unit (ReLU).
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Fig. 2. The VGG-16 for retinopathy detection with OCT B-scans.

To train a very deep CNN model from scratch (i.e., VGG-16), it generally requires large amount
of labeled data. Here, we adopt the idea of pretraining which intends to train the model on a
large public dataset with labels. Specifically, we train the VGG-16 on the ImageNet dataset. The
pretrained VGG-16 thus has a strong capability of feature learning on images. When applying
this pretrained VGG-16 for the detection of retinopathy on OCT images, it requires less labeled
images and converges faster in model training.

2.3. Virtual adversarial training

Due to the high cost of data annotation and the lack of ophthalmologists in many countries,
especially the developing countries, collecting a large labeled OCT image dataset to train a deep
learning model for automatic detection of retinopathies is not realistic. However, unlabeled
OCT images are widely available, e.g., around 30 millions of OCT images have been generated
per year [26]. In this work, we attempt to develop a deep learning algorithm (built upon the
pretrained VGG-16) with very few labeled and large amount of unlabeled OCT images.

We adopt the idea of local distributional smoothness (LDS) which indicates the smoothness of
the output distributions of a model with respect to the inputs [20]. In another words, the changes
of the model outputs should be small with small input perturbations, resulting a robust model
with good generalization performance. Virtual adversarial training (VAT) is an effective way to
achieve LDS of a model [20]. It intends to find a small perturbation of an input, such that the
output distributions of the model have the largest change. Then, the model is trained to minimize
this change due to the perturbed input. Specifically, given an input data x (e.g., an OCT image), a
new sample, x̃ will be generated by adding a small perturbation µ to the original input x, i.e.,
x̃ = x + µ. Among all the possible perturbations µ, the adversarial perturbation, denoted as µadv,
will lead to the largest change over the model outputs. Here, the change of the model outputs
is measured by using the KL divergence. The µadv can be obtained by solving the following
equation:

∆KL (µ, x, θ) = KL [p(y|x, θ)| |p(y|x + µ, θ)] ,
µadv = argmax

µ
{∆KL (µ, x, θ) ; ∥µ∥2 ≤ ϵ} , (1)

where θ is the model parameters, y is the model output, and ∥µ∥2 ≤ ϵ is to ensure that the
perturbation µ is smaller than ϵ which is pre-defined hyper-parameter. After obtaining the
adversarial perturbation µadv, the objective of VAT is to minimize the KL divergence of the
model outputs, resulting a robust model with LDS towards various perturbations. Thus, the VAT
loss can be defined as follows:

VATloss = ∆KL (µadv, x, θ) . (2)

Based on the above analysis, it is clear that the calculation of the VAT loss only requires the
model outputs, but no labels. It is different from conventional adversarial training which requires
the true labels. Therefore, the VAT loss can be used for semi-supervised learning where large
number of unlabeled data are available.
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In this work, we assume that very few labeled and large number of unlabeled OCT images are
available for retinopathy detection. For the labeled OCT images, the cross-entropy (CE) loss is
calculated during model training, which can be expressed as

CEloss = −
1
N

N∑︂
i=1

C∑︂
c=1

yic log ŷic, (3)

where N is the total number of labeled OCT images, C is the number of retinopathies, yic
represents the true probability of the sample i and the class c, and ŷic represents the predicted
probability. The VAT loss in Eq. (2) is then employed for unlabeled OCT images. Hence, the
overall loss of the proposed method can be expressed as

CEloss(xl) + αVATloss(xul), (4)

where xl and xul denote the labeled and unlabeled OCT images, and α is the hyper-parameter to
control the contribution of the CE loss and the VAT loss.

2.4. Grad-CAM for visualization

For the automatic detection of retinopathy via deep learning, a major concern is how to interpret
the predictions of the model, so that the ophthalmologists will be confident on the predictions.
Here, we adopt a gradient-based method, i.e., Grad-CAM [21], which is able to visualize the
regions of inputs (also known as saliency map) that are “vital” for the current prediction. As the
retinopathy has clear patterns on OCT images, we can verify the model by checking whether it
can focus on these patterns when predicting different retinopathies.

The basic idea of Grad-CAM for the visualization of the proposed method is to use the gradient
information flowing into the last convolutional layer of the VGG-16 to understand each neuron
when making predictions. Assume that yc is the score (before the softmax layer) of the class
of interest, and Aij

k is the pixel at i-th row and j-th column of the k-th feature map of the last
convolutional layer, we can calculate the weight of each feature map based on the gradient
information, shown as

wk =
1
Z

∑︂
i

∑︂
j

∂yc

∂Aij
k

, (5)

where Z is the total number of pixels for the k-th feature map. After obtaining the weights for all
the feature maps, the saliency map can be expressed as

SGrad-CAM = ReLU

(︄∑︂
k

wkAk

)︄
. (6)

Here, the ReLU helps us to focus on the pixels that have positive relationship with the class of
interest. With the saliency map, we are able to understand which regions of an OCT image play a
key role when predicting different retinopathies. This can be further verified by ophthalmologists,
such that users are confident when using the proposed method for automatic detection of
retinopathy with OCT images.

2.5. Implementation details

For the proposed method, stochastic gradient descent (SGD) with a learning rate of 0.001 and a
momentum of 0.9 is adopted for parameter optimization in training. Here, we use batch training.
The batch size is 8 for the labeled data and the batch sizes are 16 and 32 for the unlabelled data in
the two datasets (namely BOE and CELL respectively). Let’s use the training procedure on the
BOE dataset as as example. In particular, for each individual step, given a batch of labelled OCT
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images (8 images) and a batch of unlabelled OCT images (16 images), the CE loss and the VAT
loss can be calculated. Then, the overall loss can be obtained based on Equation (4), which is
back-propagated for parameter optimization with SGD. Since there are much more unlabelled
OCT images than labelled ones, when looping over all the labelled OCT images (also known as
one training epoch), the unlabelled data still have many batches left. Then, for the next training
epoch, the labelled data starts at the first batch, while the unlabelled data starts at the next batch
for the remaining batches, until last batch. After looping over all the batches in the unlabelled
data, it goes to the first batch for the next training step. Note that, for the CELL dataset which has
too many unlabelled data, we may not be able to loop over all the unlabelled OCT images even
when we have already trained on the labelled data for many epochs.

In this paper, ϵ is set to 3 in Equation (1) and α is set to 2 in Equation (4). These hyper-
parameters are determined based on the grid search on the validation set. The training is stopped
when the performance on the validation set starts to degrade. The detailed training procedure is
shown in Fig. 3. It can be found that the proposed method can converge very fast as the pretraining
provides a good initialization. Moreover, the techniques of dropout and batch-normalization have
been adopted to prevent overfitting.

Fig. 3. Training and validation accuracies in the training procedure for the two datasets.

The code is written under the PyTorch platform with Python 3 and running on a NVIDIA
GeForce RTX 2080 Ti GPU. We have released the code of the proposed method in GitHub with
the following link: https://github.com/xuqing88/Pytorch-SSDL-OCT.

3. Evaluation

3.1. Data description

In this paper, we use two popular retinopathy detection datasets to evaluate the performance of
the proposed method. The first dataset (denoted as BOE dataset) was collected by Srinivasan et
al. [22] from 45 subjects in three Universities, i.e., Duke University, Harvard University and
the University of Michigan. It contains 723 images with AMD, 1,101 images with DME, and
1,407 NORMAL images, which were collected from 15 normal patients, 15 patients with AMD,
and 15 patients with DME. Note that, each patient has one volume scan with different number
of B-scans. For the BOE dataset, the number of outputs in the softmax layer, C, equals to 3
and it is a three-class classification task. The second dataset (denoted as CELL dataset) was
obtained from [23]. Totally, 84,484 OCT images were collected from 5,319 subjects, where the
number of CNV, DME, DRUSEN and NORMAL images are 37,455, 11,498, 8,866, and 26,565,
respectively. For the CELL dataset, C equals to 4 and it is a four-class classification task. Fig. 4
shows some typical OCT images with different retinopathies in the two datasets. Since the input
size of VGG-16 is 224 × 224 × 3, the first step is to resize all the OCT images into the dimension

https://github.com/xuqing88/Pytorch-Semi-supervised-DL-method-for-Retinopathy-Automatic-Detection
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of 224 × 224 × 3. Note that, the original size of the OCT images is varying. This is the only
preprocessing that needs to be done for the proposed method.

Fig. 4. An illustration of OCT images with different retinopathies in the two datasets. The
arrows indicate the critical parts, such as neovascular membrane and retinal fluid, for the
recognition of retinopathy.

In this paper, we consider a very challenging and practical scenario where only very few
labeled and large amount of unlabeled OCT images are used for training the proposed method.
Specifically, we randomly select 80 labeled OCT images, which account for around 0.25% and
0.095% of total OCT images in BOE and CELL datasets respectively, for training the proposed
method. Note that the training also includes 1,357 unlabeled OCT images for the BOE dataset
and 83,324 unlabeled OCT images for the CELL dataset. Another 80 randomly selected OCT
images are utilized for validation. For testing, we use 924 and 1,000 OCT images in BOE and
CELL datasets, respectively. Note that we perform patient level random selection to guarantee
that the scans from the same patient appear in one set only (i.e., training, validation or test set).
Specifically, training and validation data are from 33 and 4,686 subjects for the BOE and CELL
datasets, respectively. While the test data are from another 12 and 633 subjects for the BOE and
CELL datasets, respectively.

3.2. Experimental setup

To evaluate the performance of the proposed method, we have compared it with some benchmark
approaches in the literature, including the SVM with Histogram of Oriented Gradients (HOG)
features [22], normal CNN [27], AlexNet [28] with and without pretraining, ResNet-18 [10] with
and without Pretraining, VGG-16 [16] with and without pretraining. Note that these supervised
learning methods can only use the labeled OCT images for model training, i.e., 80 labeled
OCT images. We also conducted a comparison with some advanced semi-supervised deep
learning methods, i.e., pseudo-labeling [17], temporal ensembling [18], and mean teacher [19].
The pretrained VGG-16 is adopted to combine with these semi-supervised techniques for fair
comparison.

In order to quantify the performance of different methods, we adopt the evaluation metrics
of classification accuracy, sensitivity (also known as recall), specificity, AUC and ROC curve,
which are widely used in the literature [10,16,29].
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The definition of overall accuracy can be straightforward, which can be expressed as

Accuracyoverall =
Number of correctly classified samples

Total number of samples
=

TPA + TPB + TPC

N
(7)

where N is the total number of samples, and TPA, TPB, and TPC are the numbers of correctly
classified samples (True Positive) for the classes of A, B and C respectively.

Nevertheless, the sensitivity, specificity, AUC and ROC curve are originally defined in binary
classification. In order to use these evaluation metrics for multi-class classification, we adopt the
general strategy of one-vs-rest [30].

To explain the calculation of sensitivity and specificity, let’s use a toy example for three-class
classification (namely class A, B and C). We can define three one-vs-rest scenarios, i.e., A-vs-rest,
B-vs-rest, and C-vs-rest. Figure 5 shows the calculations of sensitivity and specificity for the
scenarios of A-vs-rest, denoted as SensitivityA and SpecificityA, B-vs-rest, denoted as SensitivityB
and SpecificityB, and C-vs-rest, denoted as SensitivityC and SpecificityC. Here, we use “micro-
average” strategy for the calculation of overall sensitivity and specificity. In particular, the
reported sensitivity and specificity are weighted averages over all the one-vs-rest scenarios. The
detailed calculations are shown in Eq. (8) and (9), where NA, NB, and NC represent the total
numbers of samples in the classes of A, B and C respectively, and N = NA + NB + NC.

Sensitivitymicro =
NA

N
∗ SensitivityA +

NB

N
∗ SensitivityB +

NC

N
∗ SensitivityC (8)

Specificitymicro =
NA

N
∗ SpecificityA +

NB

N
∗ SpecificityB +

NC

N
∗ SpecificityC (9)

Fig. 5. The calculation of sensitivity and specificity for a toy example of three-class
classification.

We also adopt the one-vs-rest strategy to draw the ROC curve for each method. Specifically,
with the one-vs-rest strategy, it will generate C ROC curves (C equals to the number of classes)
for each method. Then, the final ROC curve can be obtained by averaging over all the C ROC
curves. The corresponding AUC is the area under the final ROC curve.
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3.3. Comparison with benchmark approaches

The experimental results are shown in Table 1 and Table 2. It can be found that the VGG-16
with pretraining has a superior performance over all the other benchmark approaches on both
datasets. This indicates the effectiveness of the VGG-16 network and the pretraining scheme
for the detection of retinopathy with OCT images. The semi-supervised learning algorithms
can effectively improve the performance of retinopathy detection. Moreover, the proposed
semi-supervised deep learning method significantly outperforms all the benchmark approaches
with accuracies of 0.942 and 0.936, sensitivities of 0.942 and 0.936, specificities of 0.971 and
0.979, and AUCs of 0.997 and 0.993, on the two datasets. Note that, we only use 80 labeled
OCT images for training the proposed method. The standard deviation of the proposed method is
also small, indicating its robustness. Since the SVM does not contain random components, the
standard deviation of SVM is not available.

Table 1. The experimental results on the BOE dataset. ACC refers to the classification
accuracy. STD refers to the standard deviation of multiple runs. The p-value of 1.00E-07

refers to 1.0 × 10−7.

Method ACC STD p-value Sensitivity Specificity AUC
Train

Time (s)
Test

Time (s)

SVM+HOG 0.570 - 1.00E-07 0.570 0.785 0.774 103 1.38

CNN 0.802 0.075 4.00E-03 0.802 0.901 0.950 12,591 7.38

ResNet-18 0.601 0.051 9.16E-06 0.601 0.800 0.803 8,213 5.47

ResNet-18+Pretrain 0.840 0.025 2.59E-03 0.840 0.920 0.957 758 5.44

AlexNet 0.523 0.035 1.00E-07 0.523 0.761 0.618 7,750 5.47

AlexNet+Pretrain 0.754 0.019 7.49E-06 0.754 0.877 0.841 707 5.48

VGG-16 0.629 0.066 3.36E-06 0.629 0.814 0.791 17,329 8.32

VGG-16+Pretrain 0.855 0.028 5.83E-03 0.855 0.927 0.974 1,577 8.31

Pseudo-Labeling 0.906 0.027 0.0039 0.906 0.951 0.984 5,087 8.25

Temporal Ensembling 0.893 0.054 0.0120 0.893 0.947 0.957 6,282 8.19

Mean Teacher 0.918 0.043 0.0110 0.918 0.963 0.988 7,553 8.45

Proposed 0.942 0.027 - 0.942 0.971 0.997 6,145 8.58

To demonstrate the significance of the proposed method over benchmark approaches, p-values
of the proposed method over other methods are also shown in Table 1 and Table 2. It can be
observed that p-values are all less than 0.05, which indicates the significance of the proposed
method. We also present the training and testing time for all the approaches. Even though most
of methods requires a long time (up to 5 hours) for model training, this tedious training process
only needs to be done once, which is still acceptable for real applications. The testing time (for
all the testing samples, i.e., 924 for BOE and 1,000 for CELL) of all the approaches is quite small.
The inference time for a single OCT image is less than 10 ms for the proposed method, which is
adequate for real applications.

We also implemented the supervised baseline methods with all labeled images in the training
set (i.e., 1,437 labelled OCT images for BOE and 83,404 labelled OCT images for CELL), which
can be treated as a higher bound. The results are shown in Table 3 and 4. For the BOE dataset,
the proposed method (accuracy 0.942) can outperform most of the supervised baseline methods
with all the labeled OCT images for training. It performs slightly worse than the VGG-16
with pretraining. For the CELL dataset, all the supervised baseline methods (except SVM)
significantly outperform the proposed method (accuracy 0.936). It is worth noting that for the
BOE dataset, the supervised baseline methods use 1,437 labeled OCT images for training, which
is around 18 times more labeled images than our semi-supervised learning method (with only 80
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Table 2. The experimental results on the CELL dataset. ACC refers to the classification
accuracy. STD refers to the standard deviation of multiple runs. The p-value of 1.00E-07

refers to 1.0 × 10−7.

Method ACC STD p-value Sensitivity Specificity AUC
Train

Time (s)
Test

Time (s)

SVM+HOG 0.522 - 1.00E-07 0.522 0.841 0.783 106 1.66

CNN 0.556 0.040 1.00E-07 0.556 0.852 0.815 13,314 6.25

ResNet-18 0.569 0.038 1.00E-07 0.569 0.856 0.814 7,688 4.19

ResNet-18+Pretrain 0.826 0.036 7.80E-05 0.826 0.942 0.965 722 4.20

AlexNet 0.432 0.026 1.00E-07 0.432 0.811 0.685 6,976 4.02

AlexNet+Pretrain 0.837 0.030 1.10E-05 0.837 0.946 0.971 655 4.03

VGG-16 0.527 0.060 2.00E-07 0.527 0.842 0.797 18,821 7.18

VGG-16+Pretrain 0.844 0.025 2.50E-05 0.844 0.948 0.976 1,723 7.16

Pseudo-Labeling 0.916 0.018 0.0063 0.916 0.972 0.991 3,767 6.52

Temporal Ensembling 0.863 0.024 0.0004 0.863 0.955 0.977 4,950 7.68

Mean Teacher 0.881 0.016 0.0067 0.881 0.961 0.980 5,832 7.14

Proposed 0.936 0.007 - 0.936 0.979 0.993 4,505 7.08

labeled OCT images). While, for the CELL dataset, the supervised baseline methods use 83,404
labeled OCT images for training, which is around 1,000 times more labeled images than our
semi-supervised learning method. That is why all the supervised learning methods including
these without pretraining can achieve very good classification performance and significantly
outperform the proposed method. But in real life, it is almost impossible to obtain such a
huge labelled dataset for model training. Even labeling thousands of OCT images can be very
challenging for resource-limited regions. That is why the proposed method can be of great
significance in real applications.

Table 3. The experimental results of supervised baseline
methods on the BOE dataset with all labeled training

samples.

Method ACC Sensitivity Specificity AUC

SVM+HOG 0.742 0.742 0.871 0.806

CNN 0.928 0.928 0.964 0.993

Resnet-18 0.765 0.765 0.881 0.911

Resnet-18+Pretrain 0.908 0.908 0.954 0.981

AlexNet 0.582 0.582 0.791 0.774

AlexNet+Pretrain 0.801 0.801 0.900 0.866

VGG-16 0.637 0.637 0.819 0.782

VGG-16+Pretrain 0.946 0.946 0.973 0.994

The ROC curves of the all the approaches on the two datasets are demonstrated in Fig. 6.
It is clear that the proposed semi-supervised deep learning method performs the best, which
is consistent with other evaluation metrics in Tables 1 and 2. The confusion matrices of the
proposed method are illustrated in Fig. 7. It can be found that the NORMAL class is relatively
easy to be detected due to the clean patterns (see Fig. 4). Considering that the DME has more
complicated patterns, the recognition of DME is relatively challenging in both datasets.
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Table 4. The experimental results of supervised baseline
methods on the CELL dataset with all labeled training

samples.

Method ACC Sensitivity Specificity AUC

SVM+HOG 0.798 0.798 0.933 0.947

CNN 0.972 0.972 0.991 0.999

Resnet-18 0.978 0.978 0.993 1.000

Resnet-18+Pretrain 0.994 0.994 0.998 1.000

AlexNet 0.978 0.978 0.993 1.000

AlexNet+Pretrain 0.991 0.991 0.997 1.000

VGG-16 0.984 0.984 0.995 1.000

VGG-16+Pretrain 0.998 0.998 0.999 1.000

3.4. Impact of the number of labeled OCT images

Here, we investigate the performance of the VGG-16 with pretraining and the proposed semi-
supervised deep learning method with different numbers of labeled OCT images. Figure 8 shows
the experimental results. Specifically, we test the two methods with 40, 60, 80, 100, 120, 160 and
200 labeled OCT images. It is obvious that the performance of the models improves with more
labeled OCT images. If the number of OCT images is too few, e.g., 40, the models may not be
able to converge during training, leading to a poor performance. When the number of labeled
OCT images is larger than 60, the accuracies of the proposed model on both datasets are higher
than 0.9, which is very crucial in real application where the number of labeled images is very
limited. In all scenarios, the proposed method outperforms the VGG-16 with pretraining, which
indicates the effectiveness of the proposed method.

3.5. Impacts of the hyper-parameters α and ϵ

For our proposed method, α in Equation (4) is a key hyper-parameter, which controls the
contributions of the CE loss and the VAT loss. Specifically, we tested α with values of [0, 0.2, 0.5,
1.0, 2.0, 5.0, 10.0, 20.0] on the two datasets. We also investigated the impact of hyper-parameter
ϵ , which controls the magnitude of the perturbation in Equation (1), on model performance.

The results are shown in Fig. 9. Note that α = 0 means that the VAT loss is not used, which
turns out to be the VGG-16 with pretraining. It can be found that the performance of the proposed
method improves with larger α values (more contributions of the VAT loss) at the beginning.
This indicates the effectiveness of the VAT loss on unlabeled data for enhancing the performance
of retinopathy detection. But when the α value is too large, the performance of the proposed
method degrades. This is because the optimization will be mainly based on the VAT loss on the
unlabeled data, which lacks the correct supervision from the labeled data. Therefore, a careful
selection of this hyper-parameter is of great importance for the proposed method. In this paper,
we have chosen α = 2 for both datasets. According to Fig. 9, too small or large perturbation will
also lead to a degraded performance of the proposed method. In this paper, we have chosen ϵ = 3
for both datasets.

3.6. Comparison with human experts

For the CELL dataset, Kermany et al. also asked six human experts with significant experience
in an academic ophthalmology center to classify 1,000 OCT images [13]. Here, we attempt to
compare the proposed method with these human experts for identifying different retinopathies
with OCT images. The results are presented in Fig. 10, where the proposed method with different
number of labeled OCT images, i.e., 80, 160 and 200, are selected for comparison. It can be
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Fig. 6. The ROC curves of all the approaches on the two datasets.
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Fig. 7. Confusion matrices of the proposed method on the two datasets. The values of
the diagonal elements represent the classification accuracies for each class. And the rest
refer to the misclassification rates for each scenario. For example, the value at the first row
and second column in the left figure represents that 6.5% of samples with AMD have been
wrongly classified as DME.

Fig. 8. The performance of the proposed method with different numbers of labeled
OCT images. “ACC”, “Sens” and “Spec” stand for accuracy, sensitivity and specificity,
respectively.
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Fig. 9. The performance of the proposed method with different α and ϵ values on the two
datasets.

found that the proposed method with only 80 labeled OCT images can achieve expert level when
identifying retinopathy (the lowest recognition accuracy of experts is 0.921.). With 200 labeled
OCT images, the proposed method outperforms four out of six human experts, which indicates
the effectiveness of the proposed method. Besides, it also proves that the proposed automatic
retinopathy detection system can be used for clinical applications.

Fig. 10. Comparison between the proposed method with 80, 160 and 200 labeled OCT
images for training and human experts.

3.7. Visualization with Grad-CAM

In order to interpret the predictions of the models, we adopt the Grad-CAM technique to show the
saliency maps of the proposed method, the VGG-16 with pretraining, pseudo-labeling and mean
teacher (Pseudo-labeling and mean teacher are the second best models in Table 2 and Table 1
respectively). Some representative samples are manually selected, illustrated in Fig. 11. It can be
found that the VGG-16 with pretraining often finds the wrong regions of the OCT images when
making predictions, leading to a poor performance. Generally, semi-supervised learning methods
have a superior performance on finding the key patterns. Among them, the proposed method
performs the best. It can accurately find the key patterns of the OCT images when predicting
different retinopathies. This explains why the proposed method performs the best for retinopathy
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detection. Besides, it will also give confidence to ophthalmologists when using the proposed
system for the detection of retinopathy with OCT images.

Fig. 11. The visualization of VGG-16 with pretraining, pseudo-labeling, mean teacher and
the proposed method by using Grad-CAM.
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We need to emphasize that there are also some bad cases where the models cannot find the
key patterns. These cases may lead to wrong predictions. We have manually selected two bad
cases (true label is DME) in the two datasets, shown in Fig. 12. The network prediction for
each method has been indicated on the figure. It can be found that all the four models cannot
well capture the key patterns. In this case, the models will have a much higher chance to give
wrong predictions. For example, the mean teacher focuses on a normal area of the sample from
BOE, resulting a wrong prediction as NORAML. Similarly, the VGG-16 with pretraining and
pseudo-labeling also predict DME as NORMAL when focusing on a normal area of the OCT
image from CELL. The proposed method and mean teacher predict the DME as DRUSEN as
they focus on a region that looks like drusen for the given sample from CELL.

Fig. 12. Bad examples for the two datasets. White arrows indicate the key patterns.

4. Discussion

In this paper, we proposed a semi-supervised deep learning method for automatic detecting
retinopathy with OCT images. The proposed method achieves recognition accuracies of 0.942
and 0.936 with only 80 labeled OCT images for training on two widely used datasets. Even
though the benchmark approaches in the literature have shown great performance for the detection
of retinopathies based on OCT images, they highly rely on the huge number of labeled OCT
images for model training, which may not be available in real world scenarios. The proposed
semi-supervised deep learning methods only requires very few labeled and large number of
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unlabeled OCT images, to achieve a high detection accuracy. We also verified that if more labeled
OCT images are available, the performance of the proposed method can be further enhanced.

When comparing the proposed method with human experts, we surprisingly find that the
proposed method with the training on only 80 labeled OCT images can achieve expert level in
recognizing retinopathies with OCT images. By further increasing the number of labeled OCT
images to 200, it can outperform four experts from six. Note that these human experts are with
significant clinical experience in an academic ophthalmology center. This unique property of the
proposed method is quite meaningful and practical, especially for developing countries where the
number of ophthalmologists is inadequate for the diagnosis of retinopathy with OCT images.

Only giving an accurate prediction is not enough for clinical applications. If we are also able
to provide some evidences on how the algorithm makes certain predictions, ophthalmologists
will be confident on the prediction results. In this paper, we adopt the Grad-CAM approach to
visualize the key regions (patterns) of the input OCT images that determine the final predictions.
In experiments, it can be found that the proposed method is able to focus on the correct patterns
when predicting retinopathies.

Overall, the proposed semi-supervised deep learning method for retinopathy detection only
requires a very small amount of labelled OCT images which can be easily obtained. It is able to
achieve expert level performance with only 80 labelled OCT images. Besides, it can provide
some evidences for the prediction by finding key patterns of the OCT images. However, there are
some limitations of the proposed method when applying to real-world clinical applications. First
of all, since only very few labelled OCT images are adopted, class imbalance issue (e.g., normal
class may be dominate in real applications) may have a big influence on model performance.
Another key issue is the quality of these few labeled OCT images. If the quality of OCT images
cannot be guaranteed, the performance of the proposed method would suffer a lot.

In our future works, we will consider to further enhance the performance of the proposed
method by using optical coherence tomography angiography (OCTA) images which contain
additional information for retinopathy detection [31,32].

5. Conclusion

In this paper, we proposed a semi-supervised deep learning method for retinopathy detection
with OCT images. The proposed method consists of a pretrained VGG-16 network for feature
learning on raw OCT images and a virtual adversarial training (VAT) to incorporate large amount
of unlabeled OCT images for performance improvement. In experiments, the proposed method
outperforms benchmark approaches and achieves accuracies of 0.942 and 0.936 with only 80
labeled OCT images on two popular datasets. When comparing with human experts, the proposed
method with 200 labeled OCT images performs better than four experts from six. By adopting
the Gradient Class Activation Map (Grad-CAM) technique, we also illustrate the saliency maps
which indicate the key regions of the input OCT images when making predictions. The proposed
method can accurately find the key patterns in input OCT images, which verifies its superior
performance on retinopathy detection.
Funding. National Medical Research Council Individual Research Grant (MOH-OFIRG19may-0009); Ministry of
Education - Singapore Academic Research Fund Tier 1 (2018-T1-001-144); Ministry of Education - Singapore Academic
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